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Abstract  
Background: Infectious diseases caused by multidrug-resistant bacteria (MDR) remain a global health issue. The population uses several plants 

from the Cameroonian pharmacopeia to treat bacterial infections. The methanol extract from the aerial parts of Psychotria sycophylla (K.Schum.) 

Petit (Rubiaceae) (PSA) previously showed antibacterial activities against MDR bacteria. In the present study, the antibacterial activities of PSA 

were determined in the presence of an efflux pump inhibitor (EPI), phenylalanine-arginine β-naphthylamide (PAβN). The effects of PSA on the 

bacterial membrane and its ability to inhibit the bacterial biofilm were also assessed. 

Methods: The evaluation of antibacterial activity of PSA in the presence of PAβN was evaluated using the microdilution method. The 

modification of the bacterial membrane permeability as well as the inhibition of biofilm were evaluated using spectrophotometric methods. 

Results: When tested with PAβN, the inhibitory effects of PSA increased vis à vis all the tested bacteria. PSA also destroyed the bacterial 

membrane and showed significant inhibition of biofilms of Escherichia coli AG102 strain.  

Conclusion: The reported data provide complementary information on the antibacterial effect of Psychotria sycophylla and might be helpful in 

formulating a phytomedicine to combat infections due to multidrug-resistant bacteria. 
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Background 
 

Infectious diseases caused by multidrug-resistant bacteria remain 

a major public health problem worldwide, especially in developing 

countries where living conditions are very precarious [1, 2]. Despite 

the existence of several strategies to control bacterial infections, 

antibiotic therapy remains the most important one. Notwithstanding 

the impact of antibiotic therapy on human health, their 

inappropriate and excessive use by the population has led to 

selection pressure by bacteria [2, 3, 4], resulting in the emergence 

and re-emergence of numerous diseases responsible for the 

increase in the length of hospitalization, the cost of care and the 

mortality rate [5]. Moreover, the emergence of MDR bacterial 

strains is the main cause of therapeutic failure [6]. Among the 

known resistance mechanisms, active efflux through Resistance-

Nodulation-Division (RND) and Major Facilitator Superfamily (MFS) 

pumps for Gram-negative and Gram-positive bacteria respectively 

[7] is well recognized. Regarding the growing concern of resistance 

globally, the search for new and effective antibacterial substances 

with low toxicity remains an absolute necessity. Cameroonian flora 

abounds with numerous pharmacologically active plants with 

multiple bioactive substances that previously demonstrated anti-

inflammatory, antiproliferative, antiviral as well as antibacterial 

activities amongst others [8-29]. 

In our various strategies to combat MDR bacteria via the 

identification of antibacterial agents from traditional pharmacopeia, 

we have previously focused on Psychotria sycophylla (K.Schum.) 

Petit (Rubiaceae), used in traditional medicine for the treatment of 

various infections [30].  The antibacterial activity of the methanol 

extract of this plant as well as that of its isolated compounds has 

been in panels of Gram-negative bacteria and Staphylococcus 

aureus strains expressing resistant and MDR phenotypes [31]. In 

the present study, the activity of the crude methanol extract of this 

plant was further investigated against some MDR bacteria in the 

presence of Phenylalanine-Arginine-β-Naphthylamide (PAβN). Its 

effects were also determined on the bacterial membrane and the 

inhibition of biofilm in Escherichia coli. 

 

 

Methods 
 

Plant material and extraction 

 

The aerial parts of Psychotria sycophylla (K.Schum.) Petit 

(Rubiaceae) collected in Dschang (West Region-Cameroon, in 

November 2016) and identified at the Cameroon National 

Herbarium (Voucher number: 35642/HNC) as processed to obtain 

the methanol extract (PSA) as earlier described [31]. 

 

Chemicals for antimicrobial assay  

 

The chemicals used consisted of the reference antibiotics (RA) and 

the microbial growth indicator. The microbial growth indicator used 

in this work was p-iodonitrotrazolium chloride ≥97% (INT, Sigma-

Aldrich). The reference antibiotics used were a phenolic 

Chloramphenicol (CHL) and a polypeptide, Polymyxin B (Poly B). 

The revelator of the biofilm formation was the purple crystal. 

Dimethylsulfoxide (DMSO) was used to dissolve the test samples. 

These molecules and reagents were obtained from SigmaAldrich 

(St. Quentin Fallavier, France). 

 

 

Bacteria strains and culture media 

 

The microorganisms used in this study included multidrug-resistant 

(MDR) bacteria expressing active efflux pumps. These bacteria 

consisted of a panel of 10 bacteria (Gram-negative and Gram-

positive). They were various strains of Escherichia coli, 

Enterobacter aerogenes, Klebsiella pneumoniae, Providencia 

stuartii, and Staphylococcus aureus. These bacterial strains were 

provided by the American Type Culture Collection (ATCC) and the 

laboratory of UMR-MD1 of the University of Mediterranean, 

Marseille, France. The features of these bacteria were previously 

reported [19, 38]. They were maintained on agar plates at 4°C and 

subcultured onto appropriate fresh agar plates 24 hours before any 

antibacterial testing. Mueller Hinton agar (MHA; Sigma) was used 

for bacterial activation and Mueller Hinton broth (MHB; Sigma) was 

used for the determination of the minimal inhibitory concentration 

(MIC) of the test samples [32]. 

 

Cellular mode of action 

 

Role of the efflux pumps in the resistance of bacteria to the test 

samples 

 

The antibacterial activity of PSA and CHL (reference antibiotic) was 

evaluated according to the method described by Newton [33] with 

some modifications in the presence of the efflux pump inhibitor 

(EPI) at PAβN at 0.5 µg/mL. The determination of MICs of PSA 

was as previously described [32] with the difference that a 50 µL 

volume of a solution of the inhibitor was subsequently introduced, 

followed by a 50 µL volume of bacterial inoculum (of concentration 

4 × 106 CFU/mL) for a final volume of 200 µL/well. The negative 

controls consisted of MHB and inhibitor on the one hand; inoculum, 

MHB, and 2.5% DMSO on the other; the neutral control consisted 

of MHB alone and the positive control consisted of CHL. 

 

Effect of test sample on the bacterial membrane 

 

The effect of the extract on the membrane was carried out by the 

method described by Leejae et al. [34]. Briefly, a bacterial 

suspension with an optical density (OD) of 2.0 was prepared from a 

fresh 18 h culture. Then, the bacterial cells were separated from 

the medium by centrifugation at 400 g, for 15 min, and washed 

twice in PBS buffer (pH 7.4) and re-suspended in the same buffer. 

The suspensions were treated with the extract at concentrations of 

0.5 MIC, MIC, and 2 MIC. Polymyxin B was used as a positive 

control. The culture was incubated at 37°C for 60 min under 

agitation. Samples taken at times 0, 30, and 60 min of the 

experiment were centrifuged at 13400 g for 15 min. At each time 

and for each concentration of extract, the optical density will be 

measured at 260 nm with a spectrophotometer. 

 

Determination of the effect of test samples on the biofilm formation  

 

Inhibition of biofilm formation 

 

The anti-biofilm activity was assessed in 96-well flat-bottom plates 

using a method adapted by Chaib et al. [35] with some 

modifications. The E. coli bacterial strain (AG102) was treated in 

microdilution plates with PSA at concentrations of 4096 μg/mL - 

128 μg/mL respectively and then incubated at 37°C for 18 h under 

orbital shaking (REMI) at 7 g. Next, the planktonic cells were 

removed, and the plates were rinsed with sterile distilled water and 

stained for 15 minutes by incorporating 200 μL of crystal violet into 
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each well. Staining with acetic acid (30%), followed by 

measurement of the absorbance of the crystal violet solution at 595 

nm was performed after the biofilms were stained and rinsed with 

sterile distilled water. The tests were repeated three times and the 

minimum biofilm inhibitory concentrations 50% (MBIC50) were 

deduced using the biofilm inhibition percentages for each test 

calculated in relation to the untreated control values, according to 

the following formula:   

 

% inhibition = [OD (untreated value) ˗ OD (treated value) / OD 

(untreated value)] ×100 

 

% inhibition = Percentage inhibition; Untreated value = Optical 

density of the biofilm alone; Treated value = Optical density of the 

biofilm in the presence of the test specimen.  

 

Effect of test samples on formed biofilm 

 

The effect of PSA on formed biofilm was studied using the method 

previously described by Chaib et al. [35] with slight modifications. 

The bacterial culture of E. coli AG102 was previously prepared in 

liquid medium (MHB) and incubated at 37°C for 18 hours under 

orbital shaking Incubator, REMI at 7 g. After biofilm formation, the 

planktonic cells were removed, and the plates were treated with 

crude extract of P. sycophylla at varying concentrations between 

4096 μg/mL - 128 μg/mL respectively. Subsequently, the plates 

were re-incubated again at 37°C for 18 hours under Orbital 

Shaking Incubator, REMI (7 g) and rinsed with sterile distilled 

water, then stained for 15 minutes by incorporating 200 μL of 

crystal violet into each well. Discolouration with acetic acid (30%), 

followed by measurement of absorbance of the violet crystal 

solution at 595 nm was carried out after the biofilms were stained 

and rinsed with sterile distilled water. The tests were repeated 

three times and the biofilm eradication concentrations (BEC) were 

deduced using the biofilm eradication percentages for each test 

which were calculated in relation to the untreated control values, 

according to the following formula:    

 

% eradication = [OD (untreated value) ˗ OD (treated value) / OD 

(untreated value)] ×100 

 

Eradication % = Eradication percentage; Untreated value = Optical 

density of the preformed biofilm; Treated value = Optical density of 

the preformed biofilm in the presence of the test specimen.  

 

Results 
 

Role of PAβN on the resistance of bacteria to test samples 

 

Table 1 shows that PAβN improved the activity of PSA on all tested 

bacteria (AIF ≥ 2). Indeed, except for strain PS2636 towards PSA 

in the presence of PAβN, a clear improvement of the antibacterial 

activity of PSA when associated with PAβN was noted. PAβN 

tested at up to 128 µg/mL does not show any growth inhibitory 

effect on the selected bacteria. In general, the activity obtained with 

PSA in combination with the EPI was clearly better than that with 

CHL associated with the inhibitor. The AIF determined for PSA was 

90% greater than or equal to that of CHL. Bacterial strain PS2636 

was indifferent to the combination of PSA with PAβN. However, the 

MIC of PSA + PAβN was the same as that in the absence of PAβN 

(MIC= 4 µg/mL). The activity of PSA was exponentially improved in 

the presence of PAβN compared to other bacterial strains tested 

with AIFs up to 128 (on ATCC11296). All other bacterial strains 

were more than sensitive to the combination of the test substance 

with PAβN. PSA had improved activity in the presence of PAβN 

with AIFs ranging from 2 to 128. The activity of CHL was 

selectively enhanced with AIFs between 2 and 32. K. pneumoniae 

strains (ATCC11296 and KP55) showed no improvement in their 

susceptibility to the combination of CHL and PAβN.  

 

Effect of PSA on the bacterial membrane 

 

The leakage of intracellular constituents from E. coli AG102 

cytoplasm after exposure to different concentrations of PSA was 

assessed by measuring the absorbance of the filtrate at 260 nm. 

Irreversible damage to the bacterial membrane could be explained 

by the presence of cytoplasmic elements in the culture broth. The 

results obtained after treatment of AG102 bacterial cells with our 

different sample concentrations (2 x MIC, MIC, and 0.5 x MIC/2) 

and determination of the proteins in the culture media are shown in 

Figure 1. The results show a concentration-dependent increase in 

optical density compared to the control after 12 hours.  The 

observation was more remarkable at higher concentrations. The 

activity of PSA at 0.5 x MIC and MIC was greater than that of 

polymixin B. 

 

Anti-biofilm activity 

 

From the results obtained, it appears that PSA reduced or even 

inhibited the formation of biofilms of E. coli AG102 strain. In the 

absence of PSA, the optical density values are much higher than 

those reported by the strain in the presence of the active 

substance. The absorbance obtained in the presence of the AG102 

strain with decreasing concentrations of PSA reflects an inhibition 

(Figure 2). PSA inhibited biofilm formation with inhibition 

percentages ranging from 90.25% to 96.7%. The biofilm inhibiting 

activity of PSA was concentration dependent. From the results 

depicted in Figure 3, PSA has remarkable destructive activities on 

the already formed biofilm. In general, comparing the eradication 

percentages obtained from the control wells (containing formed 

biofilms) with those of the test wells (containing PSA), the values 

are lower than those in the test wells. Indeed, PSA effectively 

eradicated the formed biofilms with eradication percentages 

ranging from 78.52% to 85.35%. This observed eradication was 

higher at higher concentrations. 

 

Discussion 
 

MDR bacteria can over-express efflux pump systems to expel 

antibacterial molecules from the cell and thus prevent them from 

inhibitory activities. The restoration of bacterial susceptibility using 

EPIs to allow a threshold concentration of antibacterials to be 

reached, capable of inducing bacterial cell death, is the best-known 

means of combating this type of resistance today. PAβN is an 

efflux pump inhibitor that is believed to act on the RND family of 

pumps [36]. Regarding the results obtained from the association of 

PSA with PAβN (AIF ≥ 2) (Table 1), it also appears that the activity 

of the active ingredients of PSA is a substrate of bacterial efflux 

pumps and should be combined with EPI for more efficiency.  

These results corroborate with previous work [37-38] which 

demonstrated that efflux pumps decrease the intracellular 

concentration of chemicals and consequently their activity. The 

enhanced activity noted with MDR bacteria overexpressing efflux 

pumps clearly confirms that the constituents of PSA are the 

substrates for efflux pumps, having intracellular targets [39-40]. 
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 The structural and chemical diversity of 

phytochemicals in plants allows them to have various targets on 

the bacterial cell structure including the membrane, cell wall, 

metabolism, and/or molecular targets (proton pumps, proteins, 

DNA/RNA) via different modes of action. Active molecules 

targeting the bacterial wall must find complementary receptors for 

binding and suitable for action; whereas those acting inside the cell 

must be able to both cross the membrane and find target elements 

in the cell. The intracellular compartment consists of nucleic acids 

and their derivatives, but also of the proteins that are the main 

components of the cell. An increase in absorbance at 260 nm of 

the extracellular medium is an indication of the presence of nucleic 

acids and their derivatives and therefore reflects a loss of 

membrane integrity [41 - 42]. The results of this study revealed a 

concentration-dependent increase in absorbance at 260 nm 

compared to the control, suggesting damage to the cytoplasmic 

membrane (Figure 1). This irreversible alteration of the membrane 

could explain the bactericidal effect of PSA at high concentrations. 

Thus, the cell membrane constitutes a likely site of action for 

bactericidal substances [43]. 

 Some bacteria could organize themselves into structured 

communities surrounded by a polysaccharide matrix (biofilm) 

produced by the bacteria themselves and attached to a support. 

The formation of biofilms by secretion of a matrix (proteins, DNA, 

and extra-polysaccharide) or by adhesion to medical devices, 

implants, and damaged tissues is the main cause of nosocomial 

infections. This matrix could hinder or delay the entry of antibiotics 

and therefore hinders the activity of antibiotics and consequently 

causes therapeutic failures and the emergence of resistant 

phenotypes. From the data recorded in this work about the 

formation and eradication of biofilms, it can be deduced that PSA 

not only reduced or even inhibited the formation of biofilms by the 

E. coli AG102 strain, but also destroyed the biofilms that had 

already been formed (Figures 2 and 3).  These results lead us to 

assert that PSA exhibits excellent efficiency in inhibiting biofilm 

formation and is capable of rapidly and effectively disrupting biofilm 

architecture. The ability of an antimicrobial agent to penetrate and 

disperse the biofilm confirms its potency and efficacy because the 

biofilm layer is an impermeable barrier to many antibiotics [44]. 

This effectiveness would be closely linked to the richness in 

secondary metabolites of PSA. Indeed, several authors have 

demonstrated the effectiveness of terpenes, polyphenols, and 

flavonoids in inhibiting the formation of biofilms, their stability once 

formed, but also on the functioning of the molecules involved in 

Quorum Sensing [20, 45, 46]. 

 

 
 

Figure 1. Optical density of the medium inoculated with E. coli 

AG102 and treated with the methanol extract of P. sycophylla. 
MIC : Minimal Inhibitory Concentration ; PS : Psychotria sycophylla ; Extract of PS or 

PSA: methanol extract of the aerial part of Psychotria sycophylla.  

 
Figure 2. Inhibition in the formation of biofilm of E. coli AG102 

treated by PSA 

 

 
Figure 3. Eradication of biofilm formed by AG102 by PSA

Table 1. Antibacterial activity of PSA in absence and presence of PAβN 

Bacterial strains PSA CHL PAβN 

- + - +  

Escherichia coli      

ATCC8739 512 64 (8) 8 2 (4) >128 

AG102 256 64 (4) 64 4 (16) >128 

Klebsiella pneumoniae      

ATCC11296 256 2 (128) 8 8 (1) >128 

KP55 128 16 (8) 32 32 (1) >128 

Enterobacter aerogenes      

ATCC13048 256 16 (8) 8 8 (8) >128 

CM64 512 32 (16) 128 4 (32) >128 

Providencia stuartii      

ATCC29916 256 64 (4) 16 8 (2) >128 

PS2636 4 4 (1) 32 4 (8) >128 

Staphylococcus aureus      

ATCC25923 256 8 (32) <0,5 <0,125 (>4) >128 

MRSA3 256 16 (16) 2 <0,125 (>16) >128 

+ : Presence of PAβN; - : Absence of PAβN ; () : AIF « Activity improvement factor »; PSA: methanol extract from the aerial parts of Psychotria sycophylla.  
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Conclusion 
 

This work presents results that would bode well for the use of the 
extract of in the fight against infections caused by MDR bacteria. 
Most interestingly, the cellular modes of action of PSA are 
presented for the first time in this work. To make these results 
more specific in the development of a new Improved Traditional 
Medicine (ITM), cytotoxicity as well as acute and subacute toxicity 
tests could be studied. 
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