Supporting Information

Characterization of phytochemicals from the root extract of *Milletia leucantha* and their anti-microbial properties

Lilian Wanjiku Wangari ^{1*}, Evans Okemwa Kenanda ², Leonidah Kerubo Omosa ³

¹Department of Chemistry, Kisii University, School of Pure and Applied Sciences, P. O. Box

408-40200, Kisii, Kenya;

² Research and extension Division, Kisii University, P. O. Box 408-40200, Kisii, Kenya;

³Department of Chemistry, School of Physical Sciences, University of Nairobi, P.O. Box 30197-

00100, Nairobi, Kenya

*Correspondence: Tel (+254) 719 786 773; Email: elshi53.2018@gmail.com

TABLE OF CONTENTS

Figure S1: ¹ H NMR spectrum (500 MHz, (CD ₃) ₂ SO) of compound 1	3
Figure S2: 13 C NMR spectrum (125 MHz, (CD ₃) ₂ SO) of compound 1	4
Figure S3: ¹ H- ¹ H COSY spectrum (CD ₃) ₂ SO) of compound 1	5
Figure S4: HSQC spectrum (CD ₃) ₂ SO) of compound 1	6
Figure S5: HMBC spectrum (CD ₃) ₂ SO) of compound 1	7
Figure S16: ¹ H NMR spectrum (500 MHz, CD ₂ Cl ₂) of compound 2	8
Figure S17: ¹³ C NMR spectrum (125 MHz, CD ₂ Cl ₂) of compound 2	9
Figure S18: ¹ H- ¹ H COSY spectrum (CD ₂ Cl ₂) of compound 2	10
Figure S19: HSQC spectrum (CD ₂ Cl ₂) of compound 2	11
Figure S20: HMBC spectrum (CD ₂ Cl ₂) of compound 2	12
Figure S11: ¹ H NMR spectrum (500 MHz, CD ₂ Cl ₂) of compound 3 and 4	13
Figure S12: ¹³ C NMR spectrum (125 MHz, CD ₂ Cl ₂) of compound 3 and 4	14
Figure S13: ¹ H- ¹ H COSY spectrum (CD ₂ Cl ₂) of compound 3 and 4	15
Figure S14: HSQC spectrum (CD ₂ Cl ₂) of compound 3 and 4	16
Figure S15: HMBC spectrum (CD ₂ Cl ₂) of compound 3 and 4	17
Spectral data for compounds 1-4	18

Figure S1: ¹H NMR spectrum (500 MHz, (CD₃)₂SO) of compound 1

Figure S2: ¹³C NMR spectrum (125 MHz, (CD₃)₂SO) of compound 1

Figure S3: $^{1}H^{-1}H$ COSY spectrum (CD₃)₂SO) of compound 1

Figure S4: HSQC spectrum (CD_3)₂SO) of compound 1

Figure S5: HMBC spectrum (CD_3)₂SO) of compound 1

Figure S16: ¹H NMR spectrum (500 MHz, CD_2Cl_2) of compound **2**

Figure S17: ¹³C NMR spectrum (125 MHz, CD₂Cl₂) of compound **2**

Figure S18: $^{1}H^{-1}H$ COSY spectrum (CD₂Cl₂) of compound **2**

Figure S19: HSQC spectrum (CD_2Cl_2) of compound **2**

Figure S20: HMBC spectrum (CD₂Cl₂) of compound 2

Figure S11: 1 H NMR spectrum (500 MHz, CD₂Cl₂) of compound **3** and **4**

Figure S12: ¹³C NMR spectrum (125 MHz, CD₂Cl₂) of compound **3** and **4**

Figure S13: ${}^{1}H-{}^{1}H$ COSY spectrum (CD₂Cl₂) of compound **3** and **4**

Figure S14: HSQC spectrum (CD_2Cl_2) of compound 3 and 4

Figure S15: HMBC spectrum (CD₂Cl₂) of compound ${\bf 3}$ and ${\bf 4}$

Spectral data for compounds 1-4

Afromosin (1)

White crystals, ¹H NMR (500 MHz, (CD₃)₂SO) $\delta_{\rm H}$ 3.79 (OCH₃, *s*, C-4'), 3.89 (OCH₃, *s*, C-6), 7.44 (1H, *s*, H-8), 8.34 (1H, *s*, H-7), 6.96 (1H, *s*, H-5), 7.52 (2H, *d*, *J* = 10 Hz, H-2', 6'), 7.00 (2H, *d*, *J* = 10 Hz, H-3', 5'); ¹³C NMR (125 MHz, (CD₃)₂SO) $\delta_{\rm C}$ 55.6 (OCH₃), 56.3 (OCH₃), 153.4 (C-2), 124.9 (C-3), 174.8 (C-4), 116.6 (C-4a), 103.2 (C-5), 147.5 (C-6), 153.3 (C-7), 105.1 (C-8), 152.2 (C-8a), 123.1 (C-1'), 130.5 (C-2', 6'), 114.4 (C-3', 5'), 159.4 (C-4')

Lupeol (2)

White crystals, ¹H-NMR (500 MHz, CD₂Cl₂) $\delta_{\rm H}$ 1.61 (1H, *m*, *J* = 10, H-2), 3.21 (1H, *d*, *J* = 10, H-3), 0.70 (1H, *d*, *J* = 10, H-5), 1.27 (1H, *s*, H-9), 1.70 (1H, *s*, H-13), 1.94 (1H, *m*, *J* = 20 H-21), 1.38 (1H, *s*, H-22), 0.99 (3H, *s*, H-23), 0.78 (3H, *s*, H-24), 0.85 (3H, *s*, H-25), 1.05 (3H, *s*, H-26), 0.97 (3H, *s*, H-27), 0.81 (3H, *s*, H-28), 4.71 (1H, *s*, H-29), 4.59 (1H, *s*, H-29), 1.70 (3H, *s*, H-30); ¹³C-NMR (125 MHz, CD₂Cl₂) $\delta_{\rm C}$ 38.0 (C-1), 27.4 (C-2), 78.7 (C-3), 38.8 (C-4), 55.2 (C-5), 18.3 (C-6), 34.2 (C-7), 40.8 (C-8), 50.4 (C-9), 37.1 (C-10), 20.9 (C-11), 25.2 (C-12), 38.7 (C-13), 42.8 (C-14), 27.7 (C-15), 35.5 (C-16), 42.9 (C-17), 48.2 (C-18), 48.0 (C-19), 151.2 (C-20), 29.8 (C-21), 39.9 (C-22), 27.5 (C-23), 15.2 (C-24), 15.9 (C-25), 15.8 (C-26), 14.3 (C-27), 17.7 (C-28), 109.0 (C-29), 19.0 (C-30)

Stigmasterol (3)

White crystals, ¹H-NMR (500 MHz, CD₂Cl₂) $\delta_{\rm H}$ 1.88 (1H, *m*, *J* = 20, H-1), 1.83 (1H, *m*, *J* = 15, H-2), 3.49 (1H, *m*, *J* = 30, H-3), 2.25 (1H, *m*, *J* = 10, H-4), 5.38 (1H, *m*, *J* = 10, H-6), 1.52 (1H, *m*, *J* = 10, H-11), 2.03 (1H, *m*, *J* = 10, H-12), 1.60 (1H, *m*, *J* = 10, H-15) 1.07 (1H, *m*, *J* = 10, H-15), 1.30 (1H, *m*, *J* = 10, H-16), 0.74 (3H, *s*, H-18), 1.04 (3H, *d*, *J* = 5, H-21), 5.21 (1H, *dd*, *J* = 10,10, H-22),

5.06 (1H, dd, J = 10,10, H-23), 0.88 (3H, d, H-26), 0.84 (3H, d, H-27); ¹³C-NMR (125 MHz, CD₂Cl₂) $\delta_{\rm C}$ 37.4 (C-1), 31.9 (C-2), 71.8 (C-3), 42.4 (C-4), 140.9 (C-5), 121.5 (C-6), 31.7 (C-7), 31.9 (C-8), 50.2 (C-9), 36.6 (C-10), 20.9 (C-11), 39.8 (C-12), 42.3 (C-13), 56.9 (C-14), 24.3 (C-15), 28.9 (C-16), 56.4 (C-17), 12.0 (C-18), 19.5 (C-19), 40.5 (C-20), 20.9 (C-21), 138.5 (C-22), 129.3 (C-23), 51.3 (C-24), 32.4 (C-25), 21.1 (C-26), 19.2 (C-27), 25.4 (C-28), 12.3 (C-29).

β -sitosterol (**4**)

White crystals, ¹H-NMR (500 MHz, CD₂Cl₂) $\delta_{\rm H}$ 1.88 (1H, *m*, *J* = 20, H-1), 1.83 (1H, *m*, *J* = 15, H-2), 3.49 (1H, *m*, *J* = 30, H-3), 2.25 (1H, *m*, *J* = 10, H-4), 5.38 (1H, *m*, *J* = 10, H-6), 1.52 (1H, *m*, *J* = 10, H-11), 2.03 (1H, *m*, *J* = 10, H-12), 1.60 (1H, *m*, *J* = 10, H-15) 1.07 (1H, *m*, *J* = 10, H-15), 1.30 (1H, *m*, *J* = 10, H-16), 0.72 (3H, *s*, H-18), 1.04 (3H, *d*, *J* = 5, H-21), 5.21 (1H, *dd*, *J* = 10,10, H-22), 5.06 (1H, *dd*, *J* = 10,10, H-23), 0.88 (3H, *d*, H-26), 0.84 (3H, *d*, H-27); ¹³C-NMR (125 MHz, CD₂Cl₂) $\delta_{\rm C}$ 37.4 (C-1), 31.9 (C-2), 71.8 (C-3), 42.4 (C-4), 140.9 (C-5), 121.5 (C-6), 31.7 (C-7), 31.9 (C-8), 50.2 (C-9), 36.6 (C-10), 20.9 (C-11), 39.8 (C-12), 42.3 (C-13), 56.9 (C-14), 24.3 (C-15), 28.9 (C-16), 56.4 (C-17), 12.0 (C-18), 19.5 (C-19), 40.5 (C-20), 20.9 (C-21), 33.9 (C-22), 26.0 (C-23), 45.8 (C-24), 32.4 (C-25), 21.1 (C-26), 19.2 (C-27), 25.4 (C-28), 12.3 (C-29).